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This article asks ’if two otherwise identical economies were distinguished
only by their distributions of wealth, are they equally stable in response to
a random shock?’ A theoretical financial network model is proposed to
understand the relationship between wealth inequality and financial crises.
In a financial network, financial assets link individual asset and liability
holders to form a web of economic connections. The total connectivity of an
individual is described by degree; the overall distribution of connections in
the network is imposed through a degree distribution – equivalent to the
wealth distribution – as incoming connections represent assets and outgoing
connections, liabilities. A network’s topology varies with the level of wealth
inequality and total wealth and simulations show that together, they
determine network contagion in the event of a random negative income
shock to some individuals. Random network simulations, whereby each
financial connection is randomly placed, reveal that increasing wealth
inequality makes a wealthy network less stable – as measured by the share
of individuals failing financially or the decline in financial asset values.
These results suggest a unique architectural role for accumulated assets and
their distribution in macro-financial stability.
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Introduction

The share of wealth held by top percentiles in the United States
provocatively peaked before both the Great Crash in 1929 and the global
financial crisis of 2007-2008.2 Is economic inequality a destabilizing
economic force? Or is the pronounced correlation a symptom of deeper
economic perturbations? The objective of this article is to conceptualize
the relationship between wealth inequality and macroeconomic instability
as manifested through the financial sector. One goal is to demonstrate how
the wealth distribution can alter the configuration of the financial economy
into more or less stable arrangements. The approach can be summarized
thusly: consider two identical economies that are observed at a point in
time and distinguished only by their distributions of wealth. Which is more
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unstable in the event of a negative shock to income: the driver of cash flows
or financial asset holders? To answer, an interpersonal financial network
model is constructed using elements of graph theory. The model is then
repeatedly simulated, generating predictions about the endogenous role of
wealth distributions on financial stability. It suggests one direct channel
from top wealth inequality to the vulnerability of a financial economy in
the event of a shock.

Axel Leijonhufvud once described a network economy as a “web of
contracts and understandings” between individuals. Wealth, as a collection
of tangible items as well as claims against others (i.e., financial assets), by
definition, creates financial links in a network economy. The model assumes
that only one type of financial asset exists: one individual’s claim on some
future cash flow that is generated by another individual’s labor income.
The presence of a financial asset naturally links asset owners to liability
holders. The total number of financial assets an individual owns represents
their in-degree, and the distribution of assets in the network economy is
imposed through an in-degree distribution equivalent to the wealth
distribution, since it is assumed that non-financial assets are homogeneous
and thus labor income is as well. As the distribution of wealth changes, the
distribution of links in the network also changes, thereby altering the
topology of the interpersonal financial network. Although the network is
static, with no individual optimization problems, contagion is a dynamic
process. Contagion occurs when a random negative shock to income – the
engine of future cash flows claimed by asset holders – decreases one
individual’s net worth to the point of financial failure, which prompts
failure costs that wipe out collateral wealth. Importantly, an individual’s
net worth is assumed to collateralize their financial liabilities, much like an
asset-backed security. The network structure implies one individual’s net
worth is linked to, and dependent on, the net worth of others. Therefore
decreases in net worth spread.

Network simulations, in which the arrangement of financial links is
random, show that the model economy is more unstable in the event of a
negative shock when it a) exhibits high wealth inequality, and b) is
sufficiently wealthy in aggregate. Additionally, an inverted U-shaped
relationship is found between aggregate network wealth and instability. In
the model, financial instability is determined by the share of individuals
whose net worth drops below a predetermined threshold or by the total
decline in financial asset values.

Our network model embeds several features of Hyman Minsky’s
Financial Instability Hypothesis. While not an explicit network model, it is
a framework that generates endogenous instability in a financial economy of
connected banks and firms rather than individuals.3 The first feature is
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that balance-sheets of individuals are interrelated, where one’s asset is
always another’s liability. Second, assets and liabilities represent
commitments to future cash flows, where the flows across network links are
what Minsky called a “complex system of money in/money out
transactions”4. Third, a collapse in asset values stifles future cash flows and
catalyzes a crisis or as Kregel (2014) argues, only a “slight disturbance” in
money flows is necessary to cause instability and “widespread financial
distress”. Finally, a growing financial economy increases the scale of
contagion.

Financial network models are frequently used to model financial crises
amongst banks. The model in this article borrows from the framework of
Elliott et al. (2014a). Network nodes represent individuals, however, rather
than banks or countries, and financial links do not exist outside of the
network. Their emphasis is also on the levels of financialization in the
network, at both the intensive and extensive margins, rather than the
skewness of financial asset distributions, as in this article. Allen and Gale
(2000) were one of the first to show in a simple bank network model that
the configuration of financial links mattered for contagion – complete
networks were more stable than incomplete ones. More recently, Acemoglu
et al. (2015) stress network structure as the determining factor in
contagion; however, they look largely at the magnitude and frequency of
negative shocks to the network in order to analyze its stability, not at the
network’s topology. Additionally, Glasserman and Young (2015) abandon
topology measures altogether in favor of bank-specific sufficient statistics to
evaluate bank network contagion risks. They conclude that factors beyond
pure spillovers, such as confidence in counterparties and bankruptcy costs
(included in our model), are responsible for substantial economic losses
from contagion.5 The only known network models of individual wealth
inequality reside in a small statistical-mechanics literature, demonstrating
that a power-law degree distribution of wealth often results from network
formation dynamics.6 None consider contagion or network instability, as
this article does.

While the finance network literature has largely ignored inequality, the
income inequality literature has considered the relation of inequality to
financial crises – with mixed results. In a qualitative survey of 84 crises
across 21 countries over the past century, Morelli and Atkinson (2015)
examine both the levels of and changes in income inequality preceding a
crisis episode. They conclude that either’s impact is ambiguous. Rajan
(2011) argues increasing income inequality in the United States was but
one cause of the crisis because it prompted policies that ultimately relaxed
credit to unsustainable levels. Testing the Rajan hypothesis, Bordo and
Meissner (2012) regress changes in real credit growth on lagged changes in
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top income shares. They find no effect amongst a panel of 14 countries
between 1870 and 2010 and thus conclude that no link between inequality
and crisis exists.7 A dynamic, stochastic, general equilibrium model by
Kumhof and Ranciere (2010) is structured, like this article’s model, around
assets linking households. In their case the top 5 per cent own assets
derived from the borrowing of the bottom 95 per cent. The authors
calibrate the model to show that increasing income inequality, rising
household debt of the bottom 95 per cent, and increasing financial assets of
the top 5 per cent cause higher leverage and thus a higher probability of
crisis.

In the inequality literature cited above, the most common mechanism
linking rising inequality to instability is rising household debt. Mason and
Jayadev (2014) show, however, that a set of so-called “Fisher dynamics”
(i.e., interest rate change, inflation, and income growth) account for most,
if not all, of the increase in United States household leverage – the same
structural lever modeled by Kumhof and Ranciere (2010) – since 1980. In
other words, increasing household debt-income ratios do not necessarily
imply newly issued debt, and new debt is the critical lever of the
inequality-household debt-instability story.

Instead, this article argues that an economy’s financial network
configuration, as determined by the wealth distribution, is the critical
determinant. That is, the physical layout of financial linkages in the
economy dictates how a negative shock to future income cash flows
reverberates through to financial asset owners. This is how financial
instability spreads in this economy. Of course, the model is a gross
simplification of a financial capitalist economy - assuming a static network,
with one type of financial asset serviced by (uniform) labor income cash
flows and individual net worth acting as collateral. By abstracting away
layers of financial intermediaries, however, it becomes possible to expose
the latent financial relationships between individual creditors and debtors
and to understand how the interpersonal distribution of wealth in the
economy may impact its overall stability. Though the setup also ignores
network formation dynamics or consumption and saving decisions by
individuals, it provides a tractable model that can be simulated and whose
results are generalizable.

An intuitive metaphor for understanding how network attributes, wealth
inequality, and aggregate wealth may work in tandem to determine financial
stability is to consider a Jenga tower, the block-building game. If each
block represents a financial asset or link, then a short tower is relatively
stable regardless of the distribution of the blocks. As the Jenga tower grows,
however, the distribution of blocks becomes critical to its stability.
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The rest of the article is organized as follows. First, we derive the
theoretical financial network model, present its mechanics, and introduce
concepts of instability. Financial network parameter estimates are shared in
the following section, to motivate model parameterization. Next, we describe
the method to simulate random static networks and also present our results,
including the finding that increasing wealth inequality is destabilizing in
wealthy networks. We conclude with a final section.

Financial Network Model

In this section we introduce the wealth inequality network model, using
Elliott et al. (2014a) as a foundation. It notably disregards financial
intermediaries and instead relies on the latent financial links between asset
and liability holders to form an interpersonal financial network economy.
This enables a more tractable model between the economy’s wealth
distribution and its translation into network topology and overall financial
(in)stability. We present an extended example at the end to help elucidate
concepts from the model.

Setup

Consider a static financial network composed of nodes i = 1, . . . , n ∈ N. Each
node represents a wealth-owning individual or household. We exclude firms,
banks, and other types of organizations to simplify our model and to argue
that variations in the distribution of wealth between individuals have network
consequences.8 Links (or edges) connect two nodes and represent a financial
claim between them. A financial asset is a claim on future cash flows. All
network links or financial assets are represented by an n×n adjacency matrix,
matrix G, where element Gij = 1, if node i has some financial claim on node
j and 0 otherwise. Claims are directional, implying the orientation of cash
flows. Matrix G is thus composed of creditors (rows) making financial claims
on debtors (columns). Although individuals are along both dimensions of
the matrix, financial claims need not be reciprocated – and G need not be
symmetric. The network can be summarized as an unweighted directed graph
G(N,G), whose edges indicate the existence – and paths – of financial flows
between individuals.

Assume there exists only one type of financial asset held by individuals
and households, a type of asset-backed security. Each security is a claim on
future labor-income cash flows generated by the liability holder, with their
net worth serving as collateral.9 A node i owns di financial assets, where
di =

∑
j Gij is the node’s in-degree. It also represents the total number

of individuals against whom i holds claims (a row sum in G). A financial
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asset-owning node may also back the value of an asset itself, a function of
its own valuation. Let dout

j represent the total number of financial liabilities
node j is collateralizing, where d out

j =
∑

iGij (a column sum in G) is the
out-degree. Financial assets are distributed according to some probability
distribution f (di) , the degree distribution.10 Only some fraction c ∈ (0, 1)
of each individual’s overall net worth is collateralized and can be claimed by,
and owed to, asset holders in the network.

Let matrix C, the cross-holdings matrix, describe the relative ownership
claims on each node in the network, with elements

Cij =

{
c

d out
j

if d out
j > 0

0 else.
∀i 6= j (1)

The unweighted adjacency matrix G is now a weighted matrix C of
financial claims between nodes. The total number of asset holders d out

j

holding assets backed by individual j’s wealth are each entitled to an equal
portion of future cash flows. Cash flows not claimed by other individuals
(1− c) are saved. (Savings do not accumulate, as the model is static.) The
savings of each node are summarized in a diagonal matrix Ĉ, with element
Ĉjj = 1 −

∑
iCij . It is possible to rewrite the total sum of claims made on

individual j as
∑

iCij = 1− Ĉjj .
To illustrate, consider the network in Figure 1a, where n = 4 and c = 0.5.

The corresponding adjacency and cross-holdings matrices are in Figure 1b.
Notice, from G’s bottom row, that node 4 has financial assets, which are
claims on the cash flows of nodes 1, 2, and 3 (d4 = 3) but has no cash flow
obligations itself

(
d out
4 = 0

)
. Since c = 0.5, half of nodes 1, 2, and 3’s future

incomes flow to node 4.
Figure 1

Example of a four-node network
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Gross value

There also exist k = {1, . . . ,m} ∈ M non-financial assets (e.g., productive
assets, like land or human capital).11 Let matrix D, analogous to the cross-
holdings matrix C, describe the pattern of non-financial asset claims. Its
elements Dik denote individual i’s share of non-financial asset k. The gross
value of individual i’s total assets Vi is the sum of their non-financial asset
claims (each at their respective prevailing market price, pk) and financial
asset claims (backed by the liability holder’s own gross value)

Vi =
∑
k

Dikpk +
∑
j

CijVj (2)

or in matrix notation, V = Dp + CV. Solving for the gross value of each
individual in the network yields the vector of gross values V.

V = (I−C)−1Dp (3)

Note, however, that the gross value of individual i’s total assets Vi double
counts non-financial asset claims Dik. They appear not only in the first term
of Equation 2 but also in the second term as a component of other individuals’
own valuations Vj . Therefore, we derive a measurement of node net worth
in the next section.

To study specifically how the distribution of financial assets f (di)
impacts the network’s overall stability, the model is simplified by assuming
there exists one type of non-financial asset, human capital, with m = n
different units. Homogeneous, human capital also cannot be owned by
anyone else, hence D = In, although others may have claim to the future
cash flows generated by it.12 Human capital prices are homogeneous and
also normalized to one, such that pk = 1 ∀k.

Net worth

Node net worth is defined as total assets (real and financial) less liabilities.13

In other words, claims on one’s own wealth (outflows) are subtracted from
the sum of non-financial assets and ownership claims on other individuals’
wealth (inflows):

vi =
∑
k

Dikpk +
∑
j 6=i

CijVj −

∑
j 6=i

Cji

Vi (4)

Note that the first two terms are simply individual i’s gross value. In
matrix form, the equation is:
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v = Dp+CV − (I− Ĉ)V = Dp+ [C− (I−C)]V (5)

where I − Ĉ is a diagonal matrix representing weighted total obligations in
the network and C represents weighted total claims. Substituting the gross
value from Equation 3 for V in Equation 5 and rearranging leads to the
following definition of net worth:

v = Dp+ [C− (I− Ĉ)]V

= Dp+ [C− (I− Ĉ)]
[
(I−C)−1Dp

]
= ((I−C) +C− I+ Ĉ)(I−C)−1Dp

v = Ĉ(I−C)−1Dp

v = ADp

(6)

Net worth is derived from the overall claims between all nodes in the
network (matrix A) made on the underlying non-financial assets (matrix D
at price p) of the economy. Since each non-financial asset represents a node’s
human capital, net worth is a function of the cumulative claims on future
output generated by another’s human capital.

The benefit of matrix A = Ĉ(I − C)−1, called the dependency matrix,
is that it summarizes the total claims between all nodes, i.e., the sum of
direct and indirect dependencies between individuals in the network.14 It
is possible for element Aij to be nonzero, even if the corresponding element
in the cross-holdings matrix, Cij , is zero – an indication of indirect claims
by i on j via other nodes in the network but no direct claims. Elliott et al.
(2014a) posit that the dependency matrix A is not unlike Leontief’s input-
output matrix in its ability to summarize the interconnections of a network
economy. It is instructive to examine the differences between direct holdings
(from cross-holdings matrix C) as well as total direct and indirect holdings
(from dependency matrix A ]) in the cases of example networks (see our
discussion below).

The dependency matrix A also simplifies the accounting considerably.
Claims on individual non-financial assets, rather than on both financial
assets and liabilities, become a sufficient statistic to determine an individual’s
overall net worth when calculating the impacts of a shock, as they reverberate
through the network.

Wealth inequality

The wealth distribution of the network can be decomposed into its real and
financial components. By assuming that non-financial assets (in the form of
human capital) are fixed and equal for all individuals, with the same
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market price, financial assets entirely determine the wealth distribution
defined by the degree distribution of financial assets f (di). That is,
wealthier individuals will have more positive financial claims and links to
other individuals in the network than less wealthy individuals. A
deterministic degree distribution, for example, captures perfect equality of
financial wealth. Let a Pareto distribution describe the degree distribution
of an unequal society where the probability of someone’s having di financial
assets is given by p (di) = ad −γ

i , with γ > 1.15

Aggregate financial wealth of the entire network equals the total number
of financial claims

∑
di. Since the network is static and the number of

individuals n remains fixed, increasing the number of assets in the network
increases total financial wealth. This is akin to the economy growing through
increased credit or financialization at the extensive margin.

Figure 2 illustrates how a random network’s structure changes with
increasing financial wealth inequality via the Pareto degree distribution.
Arrows indicate the direction of cash flows. With n = 20 and expected
in-degree E [di] = 1, each network is generated randomly for a specified γ.
The highest Pareto parameter (γ = 2.35) corresponds to the lowest
inequality among the three graphs. Its financial claims are more evenly
spread out compared to the most unequal random network graph
(γ = 1.025) .16 The domain of γ = [1.025, 2.375] corresponds to Gini
coefficients of [0.952,0.267] and top 1% wealth shares of [0.894,0.070].

Given that it is possible to calculate the net worth of an individual vi
using Equation 6, why not directly model the wealth distribution with f (vi)?
Using the distribution of net worth, f (vi) rather than the degree distribution
of financial assets, f (di), to model wealth inequality obscures the critical
role that interconnectedness plays in the financial network. It is precisely
the interlocking structure of the network that determines whether or not a
shock leads to contagion and instability. In order to have a tractable link
structure in our adjacency matrix, the random network’s inequality must be

Figure 2
Random network graphs (n = 20)
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derived from the degree distribution f (di). The degree distribution of the
network characterizes the same magnitude of wealth inequality given by the
distribution of individual net worths, without loss of generality.

Shocks, financial failure, and instability

Though the model is static, contagion is dynamic. Let the time subscript t
specify periods in relation to the initial shock in period t = 0. Recall that
initial non-financial asset prices are set to 1, so that p is a vector of ones.
A random exogenous income shock at time t = 0 drops one individual’s
non-financial asset price by the amount λ, such that pi = 1 becomes p̃i =
λpi = λ∀t > 1, where λ ∈ [0, 1). The decline in individual i’s market price
for human capital will negatively impact their labor income and thus cash
outflows. The magnitude of the negative non-financial asset price shock p̃i
is decreasing in λ. No other individuals in the network experience a non-
financial asset price shock, and thus the vector of non-financial asset prices
after the initial shock p̃ contains a value λ in the ith row and 1 everywhere
else.17 A uniform risk of shock

(
1
n

)
exists, therefore no risk premia are priced

into financial assets.
The negative non-financial asset price shock could represent the loss of

a job or earning capacity. An individual experiences financial failure if, as
a result of this income shock, the individual’s wealth vi,t should fall below
some threshold vi. Let the failure threshold vi = θvi > 0, with θ ∈ (0, 1)
remaining constant throughout the dynamic contagion process. Parameter
θ describes individual financial fragility. A high θ implies a more easily
breached threshold and more likely financial failure in the event of a shock,
whereas a low value means more robust personal finances. The threshold vi
is positive because financial duress and accompanying cash flow strains need
not imply negative net worth in our model, only a financial setback, such
that creditors are not repaid and penalties imposed.18

Individual financial failure triggers bankruptcy costs βi. They are not
to be taken literally (net worth remains positive) but instead as
representative of increased financial burdens faced when an individual’s net
worth is depressed by some relative amount. Such burdens could include
direct costs, like attorney and accounting fees, as well as indirect costs,
such as lost income, increased future borrowing costs, and loss of collateral
or counterparty confidence. Let bt−1 represent a vector of failure costs with
element bi,t−1 = βi(p̃)Ivi,t−1<vi or βi(p̃)Ivi,t<vi , where I is an indicator
function taking a value of 1, if vi,t < vi and 0 otherwise. By definition,
βi = 0∀i at t = 1, since no individuals have failed yet. The first iteration of
calculating new node valuations occurs at t = 1, so Equation 6 is rewritten
to incorporate failure costs.19 See Figure 3 for a timeline of the first three
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periods.

vt = Ĉ(I−C)−1 (Dp̃− bt−1) = A (Dp̃− bt−1) for t = 1, . . . , T (7)

The dependency matrix A not only describes the share of an individual’s
wealth owed to claimants but also the share of failure costs absorbed by
some individual’s financial failure. When an individual fails financially, their
remaining net worth (collateral) is wiped out due to failure costs – we assume
βi,t = vi,t in our parameterization in our discussion on calibration below.
This is the contagion mechanism, where failure costs spread according to the
dependency matrix A.

Figure 3
Timeline of Network Contagion

A static financial network gives way to a dynamic process of cascading
failures. Network instability is defined by the share of the network that
fails financially. The instability is initiated by a decrease in one individual’s
earning capacity and wealth, hindering the ability to service financial debts
and thus provide cash flows for the financial claims creditors have on the
output.20 This cessation of cash outflows to creditors decreases each
creditor’s wealth, setting off progressive failures, as any decline in a
creditor’s wealth below their own failure threshold would initiate additional
failure costs. Any shock to individual net worth may ignite contagion. The
model emphasizes the role of network topology on instability by shocking
one individual rather than the entire network, which could cause instability
simply because of the scope of the shock and not necessarily network
structure.

An algorithm to identify the set of failed nodes Zt is outlined in the
discussion on the failure algorithm in the appendix. Each iteration of the
algorithm solves for Zt, the subset of nodes which fail as a direct result of the
preceding t − 1 group’s failures. Contagion stops when no new individuals
in the network fail or ZT = ZT−1.

The level of network instability is defined as the share of individuals in
the network who have failed financially S = |ZT |

n . One possible interpretation
of a financial crisis is a sufficient share of the network’s failing financially,
although we are agnostic about a specific threshold. Network failure in the
model is driven by drops in the value of initially real but then financial assets.
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Congruent with empirical definitions of financial crisis that specify the
magnitude asset values must drop, the share of nodes failing financially in
the model S is equivalent to the percentage decline in financial asset values
of the entire network. In other words, when 10% of nodes fail, then total
network wealth declines by 10%.

Example networks

Consider a simple network with n = 3 nodes and increasing numbers of
financial assets. The example will be illustrative of the network and matrix
structures, not contagion effects.20 Throughout, we assume D = I3 and
pk = 1∀k. First, consider an unconnected network – no edges linking any
nodes exist (Figure 4a). In a network with no financial claims, each individual
keeps all future cash flows, and their net worth depends only on their human
capital – which is homogeneous. When a shock occurs, only the wealth of the
individual experiencing the shock declines, but every other node is isolated.
No contagion can occur.

Figure 4
Three-node network with no financial assets

Next, suppose two financial assets are introduced into the network
(Figure 5). The total share of a node’s net worth that may be claimed by
other nodes, c, is 0.5. All elements in the diagonal savings matrix Ĉ will be
1, unless financial claims are made on a node’s value and it equals 0.5 .
The two financial assets represent two claims: node 1 has a claim on node
2’s future cash flows and node 2 has a claim on node 3’s(
d1 = d2 = 1 = d out

2 = d out
3 , while d3 = 0 = d out

1

)
. According to Equation

1, C12 = 0.5. Node 1, therefore, has claim to half of node 2’s cashflows,
while node 2 retains the other half. The same relationship holds between
nodes 2 and 3, where C23 = 0.5. Importantly, nodes 1 and 3 are indirectly
connected through node 2, though no direct link exists. (Note the dashed
edge in Figure 5a.) Hence A13 = 0.25 > C13 = 0 because node 2 claims half
of node 3’s net worth, and node 1 claims half of 2’s. Node 1 also has the
highest net worth (

∑
A1j = 1.75), of which 0.75 is derived from the other
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two nodes. Node 2 has a net worth of 0.75, of which 0.25 is derived from
node 3, and node 3 has no financial assets and thus a net worth of only 0.5
(equal to its own savings). A shock to node 1 would have no effect on the
other nodes, since no other nodes have financial claims on node 1 or are
dependent on node 1’s net worth. Only if nodes 2 or 3 were shocked could
multiple nodes fail (nodes 1 and 2), since others are dependent on them.

Figure 5
Three-node network with two financial assets

Next, we introduce another asset into the network for a total of three
financial assets (Figure 6). Node 1 gains an explicit financial claim on node
3. The in-degree of each node is now d1 = 2, d2 = 1, d3 = 0. Of the 0.5 share
of node 3’s value that is securitized within the network, half goes to node 2
and the other half to node 1. Node 1, however, still receives indirect cash
flows from node 3 via node 2. Thus its total cash inflows from node 3 are
greater than its direct cash flows or A13 = 0.375 > C13 = 0.25. Contagion
would depend on which individual is initially shocked. For example, if λ = 0
and node 1 were shocked, such that p̃1 = 0, then only node 1 would fail
financially. No other nodes depend on its value, so its failure would not
disrupt the net worth of others. If, on the other hand, node 3 were shocked,
then because its value backs the financial assets held by the other nodes it
would cause all three nodes to fail.

Finally, suppose all nodes are linked, such that di = d out
i = n − 1∀i

(Figure 7). The network has absorbed the maximum possible number of
financial assets

(
n2 − n

)
and represents a complete graph – a special case

of a regular graph, where all nodes have equal degree. Each node has equal
net worth: 0.6 from oneself and 0.2 from each of the other two nodes. Since
everyone is connected in both directions, any shock will precipitate contagion.
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Figure 6
Three-node network with three financial assets

Figure 7
Three-node network with maximum

(
n2 − n

)
financial assets

Empirics on Financial Networks

To motivate the choice of a Pareto distribution to model inequality of
financial assets (and thus financial connections), we summarize some
empirical findings from the financial network literature on the connectivity
of financial institutions through interbank lending as well as the
distribution of those connections.21 Then we present estimates fitting
various datasets of individual wealth to Pareto (power-law) distributions
along with their goodness of fit and tests against alternative distributions.

Interbanking networks

In a seminal work, Furfine (1999) developed an algorithm to parse
transactions from federal funds market data for bilateral overnight
lending.22 Summarizing interbank lending market concentration during the
first quarter of 1998, Furfine finds that the top 1% of financial institutions
in the federal funds market account for two thirds of all assets. They also
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represent 86% of federal funds sold and 97% of federal funds bought. These
levels of financial market concentration are within the range of parameter
estimates tested in our simulations in the next section.

Empirical estimates of various financial network structural parameters
from Blasques et al. (2015) are based on data from Dutch interbank markets
between 2008 and 2011.23 Amongst the top 50 lending banks, the authors
estimate a mean in-/out- degree of 1.04, with standard deviations of 1.6 and
1.84, respectively. (Banks lend to or borrow from an average of 1.04 different
banks.) At the same time, they find very positively skewed in-/out- degree
distributions, supporting the Pareto distribution imposed on our network.

Bech and Atalay (2010) describe the topology of the federal funds market
in the United States between 1997 and 2006 – also using Fedwire data
and the Furfine (1999) algorithm. In 2006, banks had an average in-/out-
degree of 3.3 ± 0.1 for overnight interbank lending.24 Among many other
parameters describing the topology of the federal funds market, they estimate
the out-degree distribution for banks on a representative day in their sample
period, concluding that a power-law distribution provides the best fit with
a parameter estimate of 1.76 ± 0.02. Their results lend support to our
model’s degree distribution parameterization, described in our discussion on
calibration below.

The aforementioned publications consider only unsecured overnight
interbank lending. Bargigli et al. (2015) study both secured and unsecured
lending for varying maturities, reflecting our own model more closely –
which posits financial assets are secured by an individual borrower’s labor
income and hence a longer maturity.25 The authors estimate the in-/out-
degree distributions of the Italian Interbank Network (IIN) between 2008
and 2012, and for 2012 they report power-law parameters on the interval
[1.8, 3.5]. A similar parameterization is applied in our model’s Pareto
degree distribution of individual financial assets. The authors’ expected
degrees of networks with long-term maturities are also within our range of
mean degree values.

While omitting financial intermediaries, our interpersonal financial
network framework emphasizes the latent interconnectedness of parties in a
financial economy. Estimates on existing networks are therefore helpful
guides for reasonable parameterizations.

Financial distributions

The Pareto distribution, also known as power law, is typically used to
estimate top shares.26 Thus our model more accurately describes a network
of top financial asset holders, where we assume financial assets are Pareto
distributed. According to the Survey of Consumer Finances (SCF), between
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1989 and 2007, American households in the top 1% of households by net
worth typically owned one third of all wealth, around 29% of all assets, and
also nearly one third of all financial assets. The top 10% held nearly two
thirds of all wealth and assets, and over 70% of all financial assets. The
bottom 50%, however, never held more than 3% of financial assets or 6.7%
of all assets (which almost entirely consisted of real estate). We argue that
since top wealth holders describe the majority of financial assets, their
network topology is a sufficient determinant of overall financial instability.

Given that the power-law relationship p(x) = Pr(X = x) = Cx−γ implies
ln p(x) = constant + γ lnx, the approximate linear relationship on a log-log
plot suggests its absolute slope is a reasonable estimate of the parameter
γ. Since Pareto (1896), power-law distributions have been traditionally
estimated thusly: first, construct a histogram representing the frequency
distribution of the variable x; plot on a log-log scale; finally, if approximately
linear, estimate its slope to find the scaling parameter.27

For numerous reasons outlined in Clauset et al. (2009), the above
estimation method is problematic. Instead, the authors propose a
maximum likelihood estimation method, whereby the scaling parameter γ
is estimated conditional on a correct estimate of the lower bound value for
power-law behavior xmin – as chosen by Kolmogorov-Smirnov statistics.
Following the methodology of Clauset et al. (2009) and applying it to the
1989 and 2010 SCF, we find a wide range of plausible power-law fittings for
United States household data on total net worth, financial assets, and total
debt.28 We repeat the exercise for comparable variables using three
international datasets from the Luxembourg Wealth Study (LWS): the
United Kingdom (GBR) in 2007, and Australia (AUS) and Italy (ITA) in
2010.

Results vary by country (Table 1). The United States data are the
least representative of a Pareto (power-law) distribution. Though parameter
estimates are easily fitted to the data, hypothesis testing rejects a statistically
significant goodness-of-fit between generated data and fitted data.29 The
Pareto distribution fits United States financial asset data from 1989 best,
though only 60% of comparisons between generated and fitted data fail to
reject the null hypothesis that they come from the same Pareto distribution.
In all other sets of United States data, we reject the null the majority
of the time. We also reject, however, any alternative distributions (the
exponential and lognormal, both with and without cutoff values) as good
fits of the United States data. 30 Fitted Pareto parameters range from
1.450(UnitedStates net worth in 2010), indicating high inequality, to 2.208
(United States financial assets in 1989) indicating much lower inequality.
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Table 1
Empirical Pareto Estimates

US UK Australia Italy
1989 2010 2007 2010 2010

net worth γ̂ 1.475 1.450 2.809 2.729 2.904
x̂min 146,468 206,670 940,162 978,558 495,000

Hypothesis testing PL reject reject fail (98) fail (92) fail (98)
Alt. reject reject reject reject reject

financial assets γ̂ 2.208 1.493 3.254 2.224 2.382
x̂min 5,102,103 184,330 788,000 495,660 59,777
PL fail (60) reject fail (98) fail (87) fail (98)
Alt. reject reject reject reject reject

liabilities γ̂ 1.988 2.036 3.086 3.571 3.393
x̂min 158,376 217,700 147,000 554,457 109,900
PL fail (16) fail (6) fail (93) fail (98) fail (94)
Alt. reject reject reject reject reject

Sources: United States: Survey of Consumer Finances (SCF); United Kingdom, Australia, Italy:
Luxembourg Wealth Study (LWS)
Notes: Australian, Italian, United Kingdom, and United States data are all in local currency units.
SCF (United States only) financial asset data are the total market value of financial investments and
products, deposit accounts, cash and other financial assets owned by household members, including
pension assets as well as life insurance. LWS (GBR, AUS, ITA) financial asset data exclude pension
assets and other long-term savings. Net worth data are total assets minus total liabilities, except
for Italy 2010, where disposable net worth is measured. Hypothesis testing: (PL) null hypothesis of
fitted power-law distribution and generated power-law distribution (using estimated parameters)
being the same, by Kolmogorov-Smirnov statistic; and (Alt.) null hypothesis of fitted alternative
distribution and generated alternative distribution (using estimated parameters) being the same,
by Kolmogorov-Smirnov statistic. Alternative distributions tested are an exponential distribution
and log normal distribution, both with and without cutoff values (x̂min). If we fail to reject a null,
the percentage of 2,500 simulated fittings of generated and fitted data, which fail to reject null, is
reported in parentheses.

Data for the United Kingdom, Australia and Italy consistently fit a
Pareto distribution, across all household variables. In at least 87% of the
comparisons between generated and fitted Pareto distributions, we cannot
reject a difference between the two. Alternative distributions are also
unanimously rejected as possible models. Though the Pareto is a uniformly
good fit of the LWS data, the scaling parameter estimates are much higher
than for the United States data, with a minimum of only 2.224 (AUS
financial assets in 2010) and a maximum of 3.571 (AUS liabilities in 2010).
One reason why may be that over-sampling of high-earning households
occurs in the SCF survey population but not the other national surveys.

Given that a Pareto distribution estimates top wealth inequality in the
tail of the distribution, the interpersonal financial network model is
representative of top financial asset holders and their influence on financial
stability. Along with the empirical literature on interbank networks, our
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estimates of Pareto parameters for 15 different wealth series suggest that
our range of calibrated γ values [1.025,2.375] for the simulation in the
proceeding section are reasonable.

Network Simulations

Setup

In a static random network, the number of nodes is fixed and links are
established following some probabilistic rule. Let di be drawn independently
from the Pareto distribution p (di) = ad−γ

i , where γ is the Pareto or power-
law parameter and a is a normalizing constant. For example, suppose a
random draw from the degree distribution yields an in-degree of 10 for
individual i. Ten financial assets are owned by i, each backed by the net
worths of 10 different individuals. As a creditor, i is represented by a row in
the adjacency matrix G. Those 10 financial claims are randomly assigned to
debtors, represented along columns in G, where Gii = 0. In short, the Pareto
draw tells us the row sum of Gi, which is randomly allotted to columns along
row i. Also, an increase in aggregate wealth

∑
di directly increases d = E [di]

because the network size is fixed at n = 100.
One characteristic of the Pareto distribution is that its scaling parameter

γ decreases in the distribution’s skewness. Not only is γ a natural inequality
measure, but it is also directly related to top percentile shares: if a random
variable is Pareto distributed, then the share going to the top q percent of

the population is equal to S(q) =
(
100
q

) 1−γ
γ . The Gini index can also be

derived from the Pareto shape parameter with GINI = (2γ − 1)−1, when
γ > 1

2 . Each relationship illustrates that wealth inequality is decreasing in
γ.

For each simulation, a random network is generated, one individual is
randomly shocked, and then (according to the failure algorithm, see
appendix) the total percentage of nodes in the network that have failed
financially S is evaluated – our measure of instability. Each simulation
specifies a unique parameterization and is repeated 1,000 times. The share
of failing nodes S reported is the average across iterations. Note that each
iteration generates a unique graph G(N,G) with a network structure that
conforms to an exogenously imposed financial wealth distribution and level
of total wealth.31 The below procedure describes the process in full.
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Step 1: Generate a static, directed random network G with parameter di
represented by a truncated Pareto probability distribution. (The
distribution is truncated to isolate the effect of γ for a given d.
At each level of γ, a maximum in-degree is set so that d remains
constant.)

Step 2: Derive the cross-holdings matrix C from G using Equation 1.

Step 3: Calculate individuals’ starting values vi∀i ∈ n, given an initial
non-financial asset price of pk = 1, and determine failure
threshold values vi = θvi for some θ ∈ (0, 1).

Step 4: Randomly choose an individual j to experience a negative income
shock and decrease its non-financial price to p̃j = λpj .

Step 5: Assume all other non-financial prices remain at 1, and calculate
the number of nodes failing according to the algorithm in our
explanation of the failure algorithm in the appendix.

The set of all nodes ZT which have failed financially, calculated at the
algorithm’s terminal step, yields the share of nodes in the network which
have failed S. Results are reported graphically, with S plotted against the
wealth inequality parameter γ for varying levels of aggregate wealth d.

Given the assumptions built into the model (i.e., n = 100, D = I, p = ι),
the share of failing nodes S is also equivalent to the percentage decrease in
total financial asset values. The baseline results in Figure 8 can therefore
be interpreted as asset value percentage declines, an alternative measure of
financial instability.

Calibration

The share of an individual’s net worth that can be securitized, c, characterizes
the percentage of future income flows claimed by creditors in the model. An
analogous and available macroeconomic variable measuring the burden of
liabilities is the debt service ratio (DSR), the share of an individual’s income
used to repay debt. Aggregate estimates from Drehmann and Juselius (2012)
necessitate several assumptions concerning average credit maturity, lending
rates, and total outstanding credit. Across a panel of both advanced and
developing economies, the aggregate debt-service ratio for households ranges
from 5.1% in Italy in 2010 to 20.3% for Denmark.32

Due to the fact that nodes in our model represent individuals or
households which also produce and have presumably made financing
decisions, we also consider the DSR of private non-financial firms and
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corporations. In 2010, Italy has a private non-financial firm aggregate DSR
of 12.9% and Denmark’s equals 29.5% (For non-financial corporations the
rates are even higher in 2010: 40.6% in Italy and 55.5% in Denmark).

The Federal Reserve produces two similar aggregate DSR estimates for
the United States: household debt service payments and household
financial obligations, both as shares of personal disposable income.33

Financial obligations include rent payments on tenant-occupied property,
auto lease payments, homeowners’ insurance, and property tax payments.
Thus its ratio is larger, peaking at 18.1% in the fourth quarter of 2007,
while the DSR was only 13.1% in the same period. The Bank of
International Settlements (BIS) data for private non-financial firms
(corporations) in the United States in 2010 is 15.8% (39.4%).

Heterogeneity of debt burdens may skew aggregate estimates, thus the
distributions are examined. In 1989 and 2010 in the United States, for
example, top wealth holders have a greater DSR than middle portions of the
wealth distribution but lower than the household average. (See Figures A.1
and A.2 in the appendix.) Generally, BIS household aggregate estimates are
lower than averages calculated from household survey data for overlapping
years.34

Setting c ∈ [0.05, 0.5] captures the full range of DSR estimates. In the
baseline model c = 0.3, modeling an economy with reasonable household
cash flow obligations. While higher c values are more akin to firms than
individuals, they are also more congruent with the units of analysis in the
network literature (as we showed in our discussion of empirics on financial
networks above).

In the event of a financial failure, such that vi < vi = θvi, an individual
incurs bankruptcy costs or some increased economic burden as a consequence
of the depressed net worth. We follow Elliott et al. (2014a) and let θ take on
a range of values in [0.8, 0.98]. This provides a wide enough spectrum, such
that individuals are either very robust to valuation changes or very sensitive.

Since the advent of the United States Bankruptcy Act in 1978, the
majority of consumer bankruptcy cases are filed under Chapter 7
protection, where assets (above some exemption threshold) are liquidated
to pay off creditors of secure debt, but the debtor’s future income streams
are untouched. For example, in 2014 approximately two thirds of all
consumer bankruptcy petitions filed in United States courts were under
Chapter 7 .35 The model assumes that, as in Chapter 7, financially failing
individuals liquidate their remaining asset position to cover failure costs.
Since failure costs equal the value of the individual’s wealth after failure in
period t, or βi = vi,t, a failed individual’s remaining assets (or collateral
wealth) are liquidated, and wealth drops to zero.
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Recall that an income shock lowers an individual’s non-financial price,
so that p̃i = λpi = λ. A negative shock may theoretically decrease an
individual’s labor-earning capacity by varying amounts, depending on an
individual’s level of savings, the number of wage earners in a household,
support systems of friends and family, and other financial coping
mechanisms. The human capital price decline could be very large if, for
example, it was caused by some physical injury preventing a wage earner
from earning any labor income through their human capital. In such an
instance λ would be small. On the other hand, the income shock may be
very small, if earning capacity is not greatly inhibited, and so λ is large.
The range of λ values tested is in [0, 0.9]. So long as λ < θ, a failure, and
thus contagion, can occur.

Concerning historical United States wealth inequality measurements,
Wolff (1992) finds the top 1% of individuals own approximately as little as
19% of household wealth (excluding retirement wealth) in 1976 and as
much as 38% in 1922. These translate to Pareto parameter values of 1.56
and 1.27, assuming top wealth shares are described by a power law.36 In
1962, the first iteration of the Federal Reserve’s household survey, the
Survey of Consumer Finances (SCF)37, found a Gini coefficient of 0.72 in
wealth with a corresponding top 1% wealth share of 32%. In its second
iteration in 1983, the SCF found a Gini coefficient for wealth of 0.74 (top
1% wealth share of 31%). Using more recent SCF waves, Kennickell (2009)
decomposes the wealth distribution. In 1989 the top 1% owned 28.3% of
financial assets and in 2007 it owned 31.5%. Assuming a power law
describes top wealth shares for the United States in those years, the
equivalent Pareto parameters are 1.38 in 1989 and 1.33 in 2007.

Values for the Pareto parameter γ are in the interval [1.025, 2.375], which
corresponds to a range of Gini coefficients from 0.9524 to 0.2667. The
corresponding range of top 1% shares is from 89.4% to 6.95%. The parameter
space is credible and within the range of empirical estimates of wealth, asset,
and liability inequalities estimated in our discourse on empirics on financial
networks, described above, and in the literature.38

Changes in γ also change the mean d = E [di] of the in-degree distribution
f (di). Therefore the Pareto distribution must be truncated in order to hold d
constant as γ varies. It becomes possible to isolate the distribution effect from
the aggregate wealth effect. With n = 100, possible d values are restricted
to the interval [1, 2]. For example, suppose γ = 2.375 (minimal inequality).
The maximum possible di is 99 (it is not feasible to have di > n). When
max {di} = 99 and γ = 2.375, then d = 2 and represents an upper bound on
expected in-degree values under our Pareto distribution. For each level of γ
we adjust the maximum di accordingly.
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The baseline model calibration is the following:
c = 0.3, θ = 0.92, βi,t = vi,t, λ = 0, γ = [1.025,2.375] and d = [1, 2]. The full
range of parameterizations is summarized in Table 2.

Table 2
Parameter calibration for static random network simulations

Variable Values Source(s)
c [0.05, 0.5] Authors estimates (see Distributions of

Household Debt Service Ratio (Appendix)),
Drehmann and Juselius (2012), BIS, FRB St. Louis

θ [0.8, 0.98] Elliott et al. (2014a)
βi υi UScourts.gov (Federal Caseload Statistics)
λ [0, 0.9]
γ [1.025, 2.375] Authors estimates

(see our subsection on Financial distributions),
Elliott et al. (2014b)

d [1, 2] Blasques et al. (2015), Elliott et al. (2014b)

Results

Two results from the baseline simulation (Figure 8) are emphasized. First,
wealth inequality positively increases network instability for moderate to
wealthy networks, and second, aggregate wealth has an inverted U-shaped
relationship with instability – initially increasing but then decreasing it. As
the network becomes more unequal (γ decreases), the share of individuals
in the economy failing financially S increases, but only when the network is
sufficiently wealthy. Wealth inequality, in other words, is destabilizing only
when the economy attains a minimum level of wealth. In our baseline
model, this occurs approximately when d = 1.4. At or above this level of
financial wealth, increasing wealth inequality causes greater financial
contagion, greater financial asset losses, and therefore a greater likelihood
of financial crisis. The positive contribution of inequality on instability is
relatively linear and is most pronounced when our network’s wealth has an
expected in-degree of 1.6, doubling the amount of instability.

Unlike wealth inequality, the effect of increasing aggregate wealth on
stability is notably non-monotonic. Initial increases in aggregate wealth
(from d = 1.0 to 1.2) increase the share of financial failures but are immune
to any inequality effects. At moderate levels of aggregate wealth (d = 1.4)
instability is higher still, but now inequality begins to have a destabilizing
impact, as it goes up (γ decreases ). The strongest effect of wealth inequality
occurs in a moderately wealthy network (d = 1.6), when moving from very
low wealth inequality to very high inequality roughly doubles the size of
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Figure 8
Baseline model

Notes: Aggregate wealth is increasing in expected in-degree d. Calibrated with c = 0.3, θ = 0.92,
and λ = 0. As γ increases, wealth inequality decreases. The domain of γ = [1.025, 2.375]
corresponds to Gini coefficients of [0.952, 0.267] and top 1% wealth shares of [0.894, 0.070].
Percentage of financial failures is average of 1,000 iterations.

the contagion – from around 25 to over 50% of the network failing. At the
highest levels of aggregate wealth (d > 1.8), inequality remains positively
and significantly related to contagion. The level or the share of the network
failing financially, however, is smaller than at moderate levels of wealth –
nearly 20 percentage points less at some levels of inequality.

The network economy is therefore most unstable or vulnerable to
negative shocks, when it is both wealthier (higher d) and unequal (low γ).
The interaction between an economy’s level of wealth inequality and total
aggregate wealth reflects the “robust-yet-fragile” nonmonotonicity found in
other network models.39

Importantly, instability occurs independently of the shocked node. Figure
9 depicts two scenarios of identically calibrated networks. In the left panel,
the poorest node in the network receives the negative income shock, and
in the right, the richest node is shocked. The level of contagion between
them, while significant and nearly identical to our baseline model in both, is
noticeably different, as is the likelihood of financial crisis. When the poorest
node (min {vi}) receives the income shock, a greater share of the network
fails for both a given level of inequality and aggregate wealth than when the
richest node (max {vi}) is shocked. This makes sense because poorer nodes



24 Journal of Income Distribution

Figure 9
Regular (equal) network

Notes: Aggregate wealth is increasing in expected in-degree d. Calibrated with c = 0.3, θ = 0.92,
and λ = 0. As γ increases, wealth inequality decreases. The domain of γ = [1.025, 2.375]
corresponds to Gini coefficients of [0.952,0.267] and top 1% wealth shares of [0.894, 0.070].
Percentage of financial failures is average of 1,000 simulations.

have more liabilities, and thus their failure costs spread to a greater number
of nodes than when the richest node is shocked. The stronger effect from
shocking the poorest node is more muted at lower aggregate wealth levels.
When the richest node is shocked, networks are more robust by over ten
percentage points for the wealthiest networks (d > 1.6) and approximately
five percentage points for the least wealthy networks (d = 1).

The overall pattern of our baseline model, however, observed when a
random node is shocked, persists: increasing wealth inequality (decreasing
γ) causes a greater share of individuals to fail in networks of at least moderate
wealth, while increasing the aggregate wealth (increasing d) of the network
is initially destabilizing but then stabilizing.

Regular graphs

To emphasize the importance of both aggregate wealth and the financial
wealth distribution on network stability, random regular graphs are
simulated for comparison. Regular graphs have equal in-degrees and thus
represent perfect financial asset equality in the model. The only parameters
changing are c, the percentage of future cash flows owed by an individual to
other claimants, and d, the in-degree of all individuals. No longer restricted
by the degree distribution parameter γ, d can take on a broader set of
values. Results are presented in Figure 10.
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Figure 10
Regular (equal) network

Notes: Regular network contains fixed in-degree di for each node, hence there exists perfect wealth
equality. Aggregate wealth is increasing in expected in-degree d. Calibrated with θ = 0.92, and
λ = 0. Percentage of financial failures is average of 1,000 iterations.

As d increases, the aggregate wealth of the network increases, though the
levels are not necessarily comparable to the baseline model. When c > 0.15,
there exists a stark pattern: the share of nodes failing increases sharply
when aggregate wealth is low (d = 1) but quickly drops again as aggregate
wealth increases beyond some level. (The particular level depends on c.)
At d = 5, instability disappears. Like the models in Figures 8 and 9, the
regular network displays increasing instability as aggregate wealth increases
from low to moderate levels, and decreasing instability as wealth increases
further. Decreasing c or financialization at the intensive margin, however,
also significantly lowers instability.40

Simulation results for the full range of parameterizations described in
Table 2 are presented in the appendix. The model is particularly sensitive
to the c parameter. This makes intuitive sense because it captures
financialization at the intensive margin. The higher c’s value is, the more
dependent asset holders are on incoming cash flows, and the greater the
risk in the event of some financial failure. The θ parameter, the measure of
an individual’s personal robustness under financial stress (or the economy’s
ability to absorb depleted cash flows on asset claims), is also critical as it
determines the failure thresholds. The parameter λ, inversely proportional
to the size of the income shock p̃i = λpi, is nearly indiscriminate in its
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effect on contagion (Figure A.5). So long as λ < θ, an initial negative
income shock will always cause at least one financial failure which will
catalyze contagion within the network.

Conclusion

Keynes once described the relationship between debtors and creditors as
forming “the ultimate foundation of capitalism”(1920, p. 236). This article’s
central goal was to examine the relationship between inequality and financial
crisis by reducing the financial economy into a network of creditors and
debtors, who are linked through financial assets. While the income inequality
literature has posited that inequality’s association with debt may relate to
financial crises, studying the distribution of the asset side of the balance sheet
illuminates a possible topographical relationship between wealth inequality
and crises.

The financial network model presented is a radically simplified
interpretation of a financial economy, one that eliminates intermediaries
and instead relies on the latent financial pathways that link individual asset
and liability holders. Implicit financial links observed between individuals
are made explicit in a directed network graph. A link indicates the
presence of a financial asset and the direction of cash flows between
individuals. It follows that changing the distribution of financial assets
changes the arrangement of links in the network. This model of wealth
inequality and financial instability, building from the framework of Elliott
et al. (2014a), suggests that changes to the network topology have two
main effects: first, increasing top wealth inequality, conditional on a
network’s overall wealth, increases instability, and second, aggregate
network wealth should have an increasing and then decreasing effect on
instability – measured by the share of nodes in the network that is
determined to have failed financially. The model’s assumptions of
homogeneous non-financials and prices allow for another interpretation of
financial instability: decreases in total network financial asset values.

One implication of the model is that future increases in wealth inequality
in the United States and other financially advanced economies may increase
macroeconomic instability, as predicted in Piketty (2014). The consequences
for moral hazard, systemic risk, and too-big-to-fail, among other regulatory
concerns, could also be great. Another broader implication is the incitement
to reduce inequality for cogent economic – not simply moral – reasons. Rising
inequality will always have broad welfare effects but macroeconomic health
may also be at stake.
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Appendix

Failure Algorithm

This algorithm is used to determine the ordering of individuals who fail
financially in the event of an initial income shock. It finds what Elliott et
al. (2014a) refer to as the best-case equilibrium, i.e., there exist the fewest
number of failures and highest values vi,t possible. The initial financial shock
occurs at period t = 0, changing non-financial prices to p̃. Let Zt represent
the set of financially failed individuals at period t, where Z0 = ∅. Then for
periods t > 1:

Step 1: Let bt−1 be a vector of failure costs with element bi,t−1 = βi
if i ∈ Zt−1 and 0 otherwise. By definition, βi = 0, ∀i at t = 1

Step 2: Let Zt be the set of all j where vj,t < 0 and:

vt = A (Dp̃− bt−1)− v (A1)

Step 3: Stop iterations if Zt = Zt−1, otherwise return to Step 1 .

The resulting set ZT , at terminal period T , is the corresponding set of
individuals who have failed financially. An important feature is that the
individuals who are added in each period (Zt − Zt−1) are those individuals
whose financial failures were catalyzed by the preceding set of cumulative
failures. For example, Z1 is the first group of individuals to fail and Z2

includes the group of individuals who fail in the second period as a direct
result of the individuals failing during period t = 1.
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Distributions of Household Debt Service Ratio (DSR)

Figure A1
US: 1989, 2010

Source: Survey of Consumer Finances (SCF)

Figure A2
France: 2005

Source: Luxembourg Income Study (LIS)

Additional Parameterizations

Changes in parameter c

The parameter c determines the share of each node’s value that can be
securitized and claimed by other nodes. It measures the share of a node’s
cash flows that are sent to creditor nodes, an approximation of the level of
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financialization in the network at the intensive margin. Simulation results of
the static random network for values of c = {0.1, 0.2, 0.3, 0.4, 0.6, 0.8}, and
θ = 0.92 and λ = 0, are shown in Figure A.3

When c = 0.1, less than seven percent of the nodes fail under all levels
of wealth inequality and aggregate wealth. Only as the share of individual
wealth that can be claimed increases (c > 0.2) does the positive effect of
wealth inequality on S begin to assert itself at moderate levels of wealth (d ∈
[1.4, 1.6]). As financialization at the intensive margin, c, continues increasing,
instability at the highest levels of aggregate wealth keeps increasing, until
we reach a maximum amount of contagion at approximately c = 0.6. (See
Figure A3.) Hereafter, instability declines as c increases. Thus the inverted
U-shaped effect of financialization (at the extensive margin) on instability
observed from increasing network wealth (d) appears also to take shape when
financialization at the intensive margin (c) is also increased – though the
downward sloping portion occurs at values of c that are well beyond any
reasonably estimated debt servicing burden, commercial or private. These
results broadly echo those of Drehmann and Juselius (2012) who show debt
service burdens positively predict economic downturns.

Changes in parameter θ

The parameter θ determines the financial robustness of an individual node in
the event of an income shock. Since financial failure is predicated on vi < vi
and vi = θvi, the smaller θ is the more financially robust an individual is.
An individual’s financial fragility is increasing in θ. Simulation results of the
static random network for values of θ = {0.8, 0.84, 0.88, 0.92, 0.94, 0.98}, and
c = 0.3 and λ = 0, are shown in Figure A4.

As θ increases an individual is more likely to breach vi in the event
that they personally experience an income shock or absorb failures indirectly
through the dependency matrix A. When θ is smallest (0.8), individuals are
especially robust to any shock and the share of failing nodes is very low
(S < 2%). See Figure A4 . When θ increases (0.88) individual financial
vulnerability increases, but contagion is still very low and unaffected by
inequality. When θ is high (> 0.92), only a slight disturbance can tip an
individual into financial failure and contagion spreads easily. The impact of
wealth inequality on contagion is also strongly felt, but, again, is dependent
on the network’s aggregate wealth level.

Changes in parameter λ

The parameter λ determines the magnitude of the random income shock
imposed on a single node. An income shock decreases the market price of
the node’s non-financial to p̃k = λpk, where pk = 1 and λ ∈ [0, 1). Therefore
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Figure A3
Changes In Parameter c

Notes: Pareto distributed in-degree d. Aggregate wealth is increasing in expected in-degree d.
θ = 0.92 and λ = 0. As γ increases, wealth inequality decreases. The domain of γ = [1.025, 2.375]
corresponds to Gini coefficients of [0.952,0.267] and top 1% wealth shares of [0.894, 0.070].
Percentage of financial failures is average of 1,000 simulations.

as the magnitude of the income shock is decreasing in λ. Simulation results
of the static random network for values of λ = {0, 0.25, 0.5, 0.75, 0.9}, and
c = 0.3 and θ = 0.92, are shown in Figure A5.
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Figure A4
Changes In Parameter θ

Notes: Pareto distributed in-degree d. Aggregate wealth is increasing in expected in-degree d.c =
0.3 and λ = 0. As γ increases, wealth inequality decreases. The domain of γ = [1.025, 2.375]
corresponds to Gini coefficients of [0.952,0.267] and top 1% wealth shares of [0.894, 0.070].
Percentage of financial failures is average of 1,000 simulations.

Only when λ is very close to θ in value (0.9) is there any significant
decrease in contagion. If λ < θ, no matter the size of the shock the overall
pattern of our simulation results holds: increasing inequality causes an
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increase in the percentage of nodes failing, conditional on a certain level of
aggregate wealth; and increasing the aggregate wealth of the network, first
increases then decreases network stability.41
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Figure A5
Changes In Parameter λ

Notes: Pareto distributed in-degree d. Aggregate wealth is increasing in expected in-degree d.c =
0.3 and θ = 0.92. As γ increases, wealth inequality decreases. The domain of γ = [1.025, 2.375]
corresponds to Gini coefficients of [0.952,0.267] and top 1% wealth shares of [0.894, 0.070].
Percentage of financial failures is average of 1,000 simulations.
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Notes
1Acknowledgements: The analysis and conclusions set forth are the author’s alone and do not

represent those of the Federal Reserve Bank of New York or the Federal Reserve System.
2See Kopczuk and Saez 2004, Piketty and Saez 2014, Saez and Zucman 2014, and Kopczuk

2015.
3See Minsky 1975 and Minsky 1986a for longer expositions or Minsky 1992 for a brief summary.
4See Minsky 1986b, p. 69.
5Both Acemoglu et al. (2015) and Glasserman and Young (2015) are derived from Eisenberg

and Noe (2001), a network model of equilibrium-clearing payments among banks used to measure
contagion.

6See Lee and Kim 2007, Kim et al. 2008, and Coelho et al. 2005.
7Gu and Huang (2014), criticizing the econometric methods of Bordo and Meissner (2012), argue

that income inequality does determine credit growth in Anglo-Saxon countries – and therefore leads
to financial crisis.

8To be sure, many individuals rely on opaque institutions and organizations to hide private
wealth. See Zucman (2014) and Zucman (2015) for a detailed analysis on hidden private wealth.

9Node net worth is discussed in detail in our discussion on net worth below.
10Note that

∑
di =

∑
d out
j , so that total assets equal total liabilities and the economy’s balance

sheet balances.
11Consider one possible microfoundation for our network model thus far. Suppose our static

network is an endowment economy, whereby all nodes are endowed with a single type of financial
asset like our asset-backed security. The endowments are randomly distributed between nodes
according to some probability distribution, f (di) , where di is the total number of financial assets
node i owns. Which nodes then back each of the di securities node i owns is randomly determined.

A richer form of heterogeneity could allow for variation amongst nodes rather than endowments.
Let ρ represent a symmetrically distributed stochastic discount factor, where ρ ∈ {ρl, ρµ, ρh}. (In
Krusell and Smith (1998), a dynamic general equilibrium model using stochastic discount factors
generates a Pareto wealth distribution in the tails that closely fits the empirical estimates of Wolff
(1994).) If a node is assigned the lower discount factor ρl, then the node must borrow to consume
single good y, as it has a preference for consumption. In this circumstance dl < d out

l and the
individual is a net debtor. If a node receives the higher discount factor ρh, it is a lender with a
preference for accumulating assets. In this event dh > d out

h and the individual is a net creditor.
Should the node receive the mean discount factor ρµ, then dµ = d out

µ .
Yet another possibility is to consider an economy of entrepreneurs. Each node is endowed with

some productive asset and an intermediary good, drawn from a distribution. The intermediary
good may be consumed, but nodes prefer to consume a final consumption good that requires the
interaction of at least two intermediary goods. Credit, fixed in aggregate, is extended between
entrepreneurs to produce the final consumption good, which may be used to repay liabilities.

12Allowing D to represent human capital takes into consideration a common critique of Piketty
(2014) best articulated by Blume and Durlauf (2015), that aggregating financial and physical assets
at prevailing market prices crucially ignores the important contemporary role human capital plays
in generating cash flows.

13See, for example, Davies and Shorrocks 1999 and Davies et al. 2007. In Elliott et al. (2014a)
this is called a nodes market value, since their models nodes represent firms or banks.

14Matrix A has all nonnegative elements and is also column-stochastic; thus each of its columns
sums to 1

(∑
i Aij = 1

)
.

15Our network model simulation results are robust to allowing wealth inequality to be determined
by the out-degree distribution f

(
d out
i

)
rather than by the in-degree distribution f (di).

16Each graph is generated thusly: draw a random Pareto distribution of financial claims di,
truncated at the top to ensure E [di] = 1 across distributions; randomly link financial claims di to
other nodes to create adjacency matrix G; plot directed graph G.

17The notation p̃i indicates that individual i experiences the negative non-financial asset price
shock.

18If vi < 0, it would imply individual human capital market price is negative, an unrealistic
scenario.

19An algorithm in the appendix, the failure algorithm, describes the process of iteratively
calculating node valuations in the event of a negative shock in order to determine the number
of total financial failures resulting from the initial shock.
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20This appropriates Minsky’s position on financial instability: “the behavior and particularly
the stability of the economy change as the relation of payment commitments to the funds available
for payments changes and the complexity of financial arrangements evolve.” (Minsky 1986b, p.
197)

21We must rely on existing research, as only aggregate lending data are publicly available.
Fedwire Funds Service, a large value transfer service operated by the Federal Reserve-though
not unique to federal funds lending, provides bank-level data of the United States federal funds
market.

22All subsequent papers cited in this section rely on the Furfine (1999) algorithm or adaptations of
it to generate their interbank lending data from the broader Fedwire data. An important caveat of
the resulting Furfine interbank lending data is their dependence on transactions occurring through
Federal Reserve balance sheets but not the banks own lending.

23Unlike the Fedwire data in Furfine (1999), the authors use TARGET2 interbank lending
data (the Eurosystem equivalent of Fedwire), which specifies individual borrowing and lending
institutions for indicated bilateral credit payments. The Dutch interbank lending data has also
been cross-validated against Italian and Spanish interbank lending data to minimize type I errors.

24The authors define a directed link as going from lender to borrower. Thus their definition of a
banks out-degree corresponds to our own definition of an individuals in-degree (cash flows directed
in towards the asset holder).

25Bargigli et al. (2015) argue that the overnight market is a poor approximation of other
interbank lending and thus an inaccurate barometer of systemic risk.

26See Kennickell (2009) for estimates of the nonparametric wealth distribution in the United
States using Survey of Consumer Finances data and Vermeulen (2014) for a detailed discussion on
estimating top tails in wealth distributions.

27In Pareto (1896), γ̂ was approximately 1.5− and conjectured to be fixed.
28Estimation programs are available online at http://tuvalu.santafe.edu/aaronc/powerlaws/.
29Generated data come from 2,500 randomly generated Pareto distributions simulated from our

fitted parameter estimates.
30Using the R package poweRlaw, we also test against alternative Poisson distributions for the

United States data. Using a Vuong test, also outlined in Clauset et al. (2009), we prefer a Pareto
distribution against a poisson in all cases.

31Additional simulations (not reported) consider n = 500 and n = 1,000 and yield
indistinguishable results. For computational ease, all simulation results are generated with n =
100.

32Data are available online at http://www.bis.org/statistics/dsr.htm
33Data are available from FRED online. Household debt service payments series: https://

research.stlouisfed.org/fred2/series/TDSP Household financial obligations series: https://
research.stlouisfed.org/fred2/series/FODSP.

34The distribution of household DSRs is calculated using Survey of Consumer Finance (SCF)
data for the United States and Luxembourg Income Study (LIS) data for France and other countries
(not shown).

35Data are available online at
http://www.uscourts.gov/statistics-reports/bapcpa-report-2014.

36Solve for γ in S(0.01) = 100
−γ
γ

37The earliest Federal Reserve Board wealth survey was called the Survey of Financial
Characteristics of Consumers.

38See Vermeulen (2014), Table 8, for Pareto parameter estimates which merge Forbes billionaire
data with national surveys, such as the SCF. Vermeulens Pareto parameter estimates range from
1.02 in the United States (very unequal) to 3.55 in the Netherlands. In his broad survey of power
laws in economics, Gabaix (2009) finds 1.5 to be the median estimate found for top wealth.

39Gai and Kapadia 2010, Nier et al. 2007, and Elliott et al. 2014a
40The step-function-like behavior of the regular network results are due to the fact that

individuals must have integer values of di = d. A rounding function in the program simply
rounds up to the next integer.

41Because contagion is a property of net worth decreasing below some threshold value, positive
shocks to income have no effect on contagion in the model.
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