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1 Introduction

Copulas are a useful tool to measure the dependency between two or more random variables. While

many economic models rely on the assumption of a marginal Gaussian distribution for each of the

underlying random variables in estimation, this frequently fails empirically. The copula approach is

attractive for its flexibility and precision with modeling the underlying marginal distributions. In

an economic model it can improve, for example, the efficiency of a maximum-likelihood estimator

by specifying a more accurate density function.

Aside from estimating models, copulas are also a useful tool for measuring the dependence between

two non-elliptically distributed random variables as it changes over time–in particular the extreme

values in their tails. Because copulas rely on concordance metrics, or measures of association

between random variables independent of Pearson’s linear correlation coefficient, copulas can more

accurately describe the relationship between two non-elliptical variables.

We apply empirical copula estimation to measure the joint distribution of two random variables,

a cross-section of US household income and wealth at a given point in time, and then compare

predicted theoretical copulas as possible statistical models. Further, we aim to understand changes

in the joint distribution as a result of the Global Financial Crisis and ensuing recession by paying

particular attention to changes between 2007 and 2010, relying on the joint distribution of income

and wealth in the United States based on the triennial Survey of Consumer Finances (SCF). Thus
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our paper is a synthesis of both the income inequality literature as well as the applied statistical

literature focusing on copulas.

Overall, we find that bivariate empirical copula density captures nuanced changes in the dependence

between income and wealth. It also captures the lower quantile dependence better than the highest

quantile dependence as the latter has too high a bound. The collapse of the housing market in

2007 caused a major drop in the households’ net worth reflected in the lower tail dependence

between income and wealth slightly drifting apart, while the upper tail dependence also increased

through 2007 and then decreased. The Gumbel copula tail dependence most closely follows the

empirical tail dependence estimates. Despite the empirical copula’s resemblance to the shape and

tail behavior of a Gumbel copula, we reject the null that Gumbel describes the income and wealth

dependence–though it does so relative to the class of elliptical copulas.

2 Background

2.1 Measurements of Inequality Dependence

The study of income distribution has been active since Vilfredo Pareto’s seminal research in 1896

on the apparent log-linear relationship between income and the percentage of the population with

at least a certain level of income. It was another Italian statistician, Corrado Gini, who developed

the popular Gini coefficient, a measure of income inequality across a population that is bounded

between zero and one. Statisticians have developed myriad derivations of the Gini, however one

intuitive metric is the ratio of the area between the 45 degree line and the Lorenz curve to the total

area under the 45 degree line.

Such tools are applied to wealth and income distributions independently, as are other metrics

such as “mean-median” ratios or the increasingly used income concentration of top quantiles as

calculated from fiscal rather than household data. All mostly consider univariate distributions at

a single point in time.

Of course we may also consider the actual marginal density functions by treating income or wealth

as a random variable. While these provide a good understanding of how wealth or income are
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distributed, they do not provide any information regarding the relationship between the two. The

wealth-income ratio plotted over wealth/income can also be useful, but a better measure is the joint

distribution. Kennickell (2009) describes the difficulty in estimating the joint distribution directly

due to the wide interval of both wealth and incomes. Thus no true dependency measure exists

between income and wealth suggesting a copula approach may be useful.

2.2 Copulas in Welfare Research

Application of copulas to questions of income and welfare is relatively fertile ground. However there

do exist some novel contributions in recent literature upon which we can build.

While not the focus of this extensive summary of the 2007 SCF results, or even its main method-

ology, Kennickell (2009) utilizes empirical copulas to describe the dependence between wealth and

income distributions between 1989 and 2007. He indirectly uses the copula method by simply divid-

ing each marginal distributions into five-percentile-point groups and computing the cross product.

He finds strikingly high dependence in the tails of the distributions (the top and bottom five-

percentiles) and a dispersed relationship in between.

Of particular interest, given the Global Financial Crisis of 2007-2008, is the change in the de-

pendence between the tails since 2007. Bricker et al. (2012) consider a panel subset of the SCF,

collected between 2007 and 2009, however they do not employ copulas and instead focus on demo-

graphic and family unit characteristics to describe the changes in wealth. They also consider the

most recent cross-sectional SCF in 2010, but do not use copulas and focus on changes in household

wealth by demographic groups.

Decancq (2013) considers a multifaceted analysis of social well-being as a supplement to the Human

Development Index, which is insensitive to dependence between parameters, arguing that well-being

is dependent on many components and their interactions. He tests his multivariate copula approach

to study welfare in the Russian Federation after Soviet disintegration, showing a richer analysis of

improved well-being since 1995. Quinn (2007) introduces the use of copulas to measure dependency

between health outcomes, typically an ordinal variable, and income, a continuous variable. These

categorical incongruities traditionally made direct comparisons difficult. The author’s results enable
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a more accurate ranking of health inequality and overall health outcomes by country.

Somewhat more aligned with our paper’s strategy, though with a labor focus, Chau (2010) estimates

cross-sectional distributions of wages for the marginal distributions and uses copulas to describe

their relative positions over time. That is, an individual’s income yt is some function of the previous

periods, and thus the copula density function is of the form f(yt, yt−1). He applies this structure to

examine wage mobility whereby the flexibility of the copula can model changing wage distributions

over time.

Each of the above papers utilize the flexibility of copulas for a broad scope of welfare applications

to gain a more nuanced understanding of the dependency between the random variables considered.

Only Kennickell (2009) applies them to describe the joint distribution of income and wealth, however

no attempt at defining a theoretical statistical model is made.

We aim to make a novel contribution to this seemingly intuitive application by considering such

models as well as the effects of the Global Financial Crisis on the dependence between income and

wealth.

3 Data

3.1 Survey of Consumer Finances

The Survey of Consumer Finances (SCF) is the most thorough household survey of wealth in the

United States. A triennial cross-section organized by the Federal Reserve, it contains micro-level

data on family balance sheets, pensions, income, and demographic characteristics among other

variables. One important feature of the survey is its oversampling of higher incomes, correcting

a known bias in other household surveys which under sample higher income households. Thus it

provides a more representative sample of the total population’s income and wealth distributions.

For example, the 2010 SCF includes 6,492 interviews, 5,012 resulting from a standard probability

design and 1,480 resulting from fiscal data in order to disproportionately select families that were

likely to be relatively wealthy and less likely to participate. (The latter is referred to as the list

sample.)
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Our data sample begins with the 1989 SCF, the first implementation of the multiple-imputation

methodology (discussed below), and continues through the most recent survey in 2010. While

we will refer to the unit of measurement as a household, the actual observations are on primary

economic units, i.e. the economically dominant occupant or couple in a household and all individuals

financially dependent on them.

3.1.1 Imputation

Imputed values are critical to the SCF as many respondents omit answers or provide only a range of

values to specific questions. Additionally imputation helps anonymize the identifiable observations

from the list sample of higher incomes and accumulated wealth. Since 1989, the first SCF year

included in our analysis, a finite value is imputed by the FRB Research & Statistics group five

times using a multiple imputation model–the FRITZ (Federal Reserve Imputation Technique Zeta)

system, a multiple imputation (MI) model developed specifically for the survey. (See Kennickell

(1998) for further detail on the Fed’s SCF imputation methodology.) The individual imputations

are made by drawing repeatedly from a previous estimate of conditional distributions of the data

variable. The five unique imputations are stored as successive observations for each data record,

or survey respondent. Therefore in the 2010 SCF, for example, the number of observations in the

full data set (32,460) is five times the actual number of respondents (6,492)

Kennickell (2000) cites two distinct advantages to multiple imputation. First, “it is more efficient in

that one can expect to get a more efficient estimate from multiple estimates of a missing value than

from a single estimate, at least if there is any randomization involved in the imputation process, as

there is in the SCF model. Second, MI makes clearer the uncertainty induced by having to make

estimates based on partial information.”

3.1.2 Variables

Based on the publicly available SCF data extract, we focus on two summary variables computed

by the Fed: total household income (inc), inclusive of wages, rent, capital gains, interest, business

and farm, social security and retirement and other income sources; and net worth (netw), where
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net worth is calculated as total financial and non-financial assets (including vehicles, homes, and

business interests) minus total debt. Both variables are adjusted for inflation in the available data.

Because the SCF is not an equal-probability survey, weights for each observation and imputed value

are critical to interpreting results. We use SCF’s public weight variable (wgt) to compute weighted

means, medians, and standard deviations in tables (1) and (2). The weights, calculated by the

Fed survey team, use original selection probabilities and frame information along with aggregate

control totals estimated from the Current Population Survey.

Figure 8 from Kennickell (2009) (Appendix A) shows the overall cumulative distribution of net

worth and income between 1989 and 2007. The marginal distribution functions (plotted on log

scales) are clearly unique, changing over time, and non-Gaussian.

The inequality literature is primarily focussed on income inequality as its data are more often

available both through fiscal sources and household surveys. Some authors, Kopczuk & Saez

(2004), have utilized estate tax data from the IRS to impute wealth from bequests. Thus the SCF

is unique in its information on household wealth formation.

3.1.3 Descriptive Statistics

Though the SCF was first implemented in 1963, it has been updated triennially between 1989 -

2010. The following are the descriptive statistics of the full samples for each SCF year in that

period–that is, data sets include each set of implicates as independent observations in each survey

year, therefore increasing the total number of observations to a multiple of five from the original

number of survey respondents.
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Year 1989 1992 1995 1998 2001 2004 2007 2010

Median 79,374 75,349 81,864 95,640 106,288 107,125 126,769 77,000

Mean 319,397 283,610 301,853 378,344 487,155 516,812 583,351 494,916

SD 1,760,650 1,734,220 1,893,431 2,448,251 2,558,802 2,932,968 3,505,423 3,140,209

n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 1: US Household Net Worth Descriptive Statistics

Note: All figures inflation adjusted and weighted by survey design probability weights. Final values may differ from

Bricker et al. (2012) because of slight discrepancies between the publicly available data and the Fed researchers’ data.

The number of observations includes multiple imputations.

Year 1989 1992 1995 1998 2001 2004 2007 2010

Median 43,985 40,417 43,513 44,633 49,131 49,633 49,561 45,743
Mean 69,181 60,734 63,264 70,784 84,712 81,313 88,162 78,332
SD 289,382 125,129 228,439 323,179 284,006 249,119 381,246 282,390
n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 2: US Household Income Descriptive Statistics

Note: All figures inflation adjusted and weighted by survey design probability weights. Final values may differ from

Bricker et al. (2012) because of slight discrepancies between the publicly available data and the Fed researchers’ data.

The number of observations includes multiple imputations.

4 Methodology

4.1 Preliminaries

4.1.1 Rank Statistics

Copulas rely on a rank-based measure of variable dependence. That is, correlation of two random

variables is not calculated as a ratio between covariance and variance per se but of relative rank of

pairs of sorted observations observations. Therefore rank correlation is a non-parametric measure

of dependence based on ranked data. In our estimates we rely on Kendall’s tau, which compares

all possible dyads, or pairs of observations, in the data:

τ =
NC −ND
1
2n(n− 1)

. (1)
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Pairs of observations (x,y) are said to be concordant if (x1 − x2) has the same sign as (y1 − y2).

The number of such pairs is equal to NC . (The number of discordant pairs is ND.)

4.1.2 Copulas

At its simplest, a copula is a joint distribution function. Sklar’s (1959) seminal theorem states

that distinct copulas define distinct joint density functions, given a fixed set of continuous uniform

marginal distributions. This implies that given a joint density of d-dimension F (x1, x2, . . . , xd) with

continuous and uniform marginals, one can “back out” a unique copula C such that the following

holds:

F (x1, x2, . . . , xd) = C(F1(x1), F2(xd), . . . , Fd(xd))

One can also then find the associated copula density function:

c(F1(x1), F2(x2), . . . , Fd(xd)) =
∂dC(F1(x1), F2(x2), . . . , Fd(xd))

∂F1(x1)∂F2(x2) . . . ∂Fd(xd)

Thus given the above copula density and the marginal densities, assuming they exist, it is possible

to derive the joint density function of the original random variables:

f(x1, x2, . . . , xd) = f1(x1)f2(x2) . . . fd(xd)c(F1(x1), F2(x2), . . . , Fd(xd))

4.2 Copula Estimation

4.2.1 Empirical Copula

From Alexander (2008), calculating the empirical copula distribution requires the sample order

statistics of the random variables. That is, if x(1) = min{x1, . . . , xn} then x(2) represents the second

smallest observation in the sample of size n and x(n) = max{x1, . . . , xn}. Then the empirical copula

distribution function for two random variables X and Y both of sample size n is

Ĉ(
i

n
,
j

n
) =

Number of dyads (x, y) s.t. x 6 x(i) and y 6 y(j)

n
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where x(i) and y(j) represent the sample order statistics.

All of the above definitions require that the random variables be transformed such that they have

uniform marginal distributions. And as mentioned previously, the flexibility of the copula is aided

by its reliance on rank statistics rather than linear correlations. The goodness-of-fit test, de-

scribed below, will similarly be rank-based. Thus the n observations for our two random variables,

X1 = (x1, y1), . . . , Xn = (xn, yn) can be transformed into pseudo-observations deduced from each

observation’s rank: Zij =
Rij

(n+1) =
nF̂j(Xij)
(n+1) , where Rij is the rank of Xij amongst (X1i, . . . , Xni)

and Zij is the empirical marginal distribution of Xij , or nF̂j(Xij). In other words, each margin is

transformed through their normalized ranks. Thus the empirical copula can be rewritten as

Ĉn(u) =
1

n+ 1

n∑
i=1

I{(Zi1 6 u1, Zi2 6 u2)} (2)

where u = (u1, u2) ∈ [0, 1]2 and I is an indicator function.

4.2.2 Gumbel Copula

The Gumbel copula, as a type of Archimedean copula, is derived from a generator function rather

than an implicit multivariate distribution like the Gaussian or Student’s-t copulas. More generally,

for some generator function Ψ(u) one can define the corresponding Archimedean copula by

C(u1, u2, . . . ud) = Ψ−1(Ψ(u1),Ψ(u2), . . . ,Ψ(ud))

and its corresponding copula density by

c(u1, u2, . . . ud) = Ψ−1(d)(Ψ(u1) + Ψ(u2) + · · ·+ Ψ(ud))

d∏
i=1

Ψ(ui)
′

where Ψ−1(d) is the dth derivative of the inverse generator function. (For the Gaussian copula,

Ψ(u) = Φ(u).) The Gumbel copula has a generator function

Ψ(u) = −(lnu)α, α > 1. (3)
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and thus we can derive the bivariate Gumbel copula density as

c(u1, u2;α) = (A+ α− 1)A1−2α exp(−A)(u1u2)
−1(− lnu1)

α−1(− lnu2)
α−1 (4)

where

A = [(− lnu1)
α + (− lnu2)

α]
1
α . (5)

When the parameter α = 1 then the marginals are perfectly independent. While the copula

literature extensively discusses efficient estimation of copula parameters using maximum likelihood

and other methods, the general Archimedean parameter θ can be also estimated by inverting

Kendall’s tau such that θ̂n = τ−1(τn), which yields the theoretical bivariate Gumbel copula density

estimate cθ̂n .

We closely consider Gumbel copulas as a possible theoretical model for the bivariate distribution of

income and wealth in the US. This is motivated by the fact that the income distribution in the US

tends to follow a log-normal distribution, as shown for 2010 in figure (2) (Appendix B). Thus given

the generator function in equation (3), the Gumbel copula is an obvious candidate. Furthermore,

initial visual comparisons between estimates of the 2010 empirical copula density (panel (b), figure

(3) in Appendix B) with the Gumbel copula reveals both display high density in the upper tail and

lower density in the lower tail.

4.2.3 Tail Dependence

Given the high tail densities of each univariate empirical distribution we are interested in the

concordance in the tails, or tail dependence. The lower tail dependence, for the ijth observation,

is defined as

λlij = lim
q→0

Pr
(
Xi < F−1i (q)|Xj < F−1j (q)

)
⇒ λl = lim

q→0

C(q, q)

q
(6)

where q represents the quantile. It exists when the limit exists and λl > 0. Similarly, the upper

tail dependence is defined as

λuij = lim
q→1

Pr
(
Xi > F−1i (q)|Xj > F−1j (q)

)
⇒ λu = lim

q→1

[
C̄(1− q, 1− q)

(1− q)

]
(7)
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where C̄(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) and represents a survival copula.

4.2.4 Goodness of Fit

When we estimate the goodness-of-fit (GoF) of an empirical bivariate copula C we want to test the

hypothesis

H0 : C ∈ Cθ̂ vs HA : C /∈ Cθ̂ where θ̂ is the parameter estimate. (8)

In order to determine the goodness of fit for any theoretical copula modeling the empirical copula,

we must have a method of calculating a test-statistic and some sort of distribution to determine

inference. Alexander (2008) suggests using root mean square errors to determine a parametric

copula’s fit to an empirical copula.

Genest et al. (2009) propose an intuitive method analogous to univariate nonparametric testing

whereby a distance measure compares the empirical copula Ĉn to the hypothetical copula Cθ̂n im-

posed under the null. A rank-based version of the familiar Cramér-von Mises statistic follows:

T̂n = n

∫
[0,1]2
{Ĉ(z)− Cθ̂(z)}2dĈ(z) =

n∑
i=1

{Ĉ(zi)− Cθ̂(zi)}
2. (9)

In each of the GoF tests we consider Cθ̂(z) takes an analytical form (Gaussian, Student’s-t, Clayton

and Gumbel copulas). The test statistic must be bootstrapped but is consistent, though computa-

tionally intensive. The p-value is estimated as

p̂ =
1

R+ 1

R∑
r=1

I{T̂r > T̂} (10)

where T̂r is the test statistic for each bootstrap sub-sample r ∈ {1, . . . , R}.

The method outlined above is the default used in the gofCopula command from the Copula

library. Its consistency is proven in Genest & Rémillard (2008). Berg (2009) determines that the

above is the best approach overall out of nine different GoF methods compared, based on extensive

Monte Carlo trials. He finds the test statistic demonstrates increasing power with dimension,

sample size and dependence.
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5 Results

In estimating the above copulas and test statistics we alternately rely on the fCopulae (Wuertz

et al. (2007)) and Copula (Yan (2007)) libraries in R. The former is used mainly to calculate

rank statistics and estimate bivariate copulas whereas the latter is used for estimating GoF test

statistics.

5.1 Empirical Copula Densities

Graphical results of the bivariate empirical copula densities and contour plots are presented in

Appendix C for each SCF year.

Two stylized facts are observed regarding the bivariate income and net worth empirical copula

densities. First, there exists extremely high upper tail densities for the top wealth and income

quantiles. The sharp spike in the far corner of the plot is several times higher than any other

density and is relatively static. This makes intuitive sense since high incomes enable saving and

therefore asset accumulation which appears as net worth, or wealth, in the SCF. This is consistent

with Piketty & Saez (2006), who show that the US income distribution is highly skewed at the top

quantiles, even fractal in a way. Our copula densities capture the overall distributions and hence

the static spike at top quantiles.

Second, there is relatively high density in the lowest income and wealth quantiles. This smaller

spike is more dynamic and representative of broader economic fluctuations. It also captures the fact

that incomes are bounded below by zero while wealth is not. All years of the SCF have observations

with negative net worth.

From 1995 to 2001 (figures (6) - (8) in Appendix C) there is a noticeable increase in the density

in the middle of the copula for both income and net worth quantiles. The contour plots make

seemingly nuanced changes clearer. This could be attributed to the overall growth of the economy

in those periods, aided by the stock-market boom, particularly the Nasdaq. However, there is a

distinct shift in 2001. Whereas somewhat of a ridge along the diagonal existed in previous years,

in 2001 it shifts decidedly towards higher wealth quantiles. Also a ridge forms along the net worth
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quantile at zero income, punctuated by a large spike at the lowest quantiles. The latter contradicts

the assertion by Sufi & Mian (2014) that the poorest households were not substantially effected by

the tech bubble bursting.

From 2001 to 2007 one again sees a noticeable ridge forming along the diagonal of the density plots.

This parallels the inflation of the mortgage bubble. As households across the income distribution

were sold over-leveraged mortgages, their net worth increased as well. This net worth was mostly

composed of housing. In 2010 the body of the density plot smooths out for all quantiles, except the

top and bottom, as the Global Financial Crisis eroded enormous amounts of wealth. Notably, the

spike in the lowest quantiles shifts for the first time. In all other survey years the spike occurred

for both the lowest income and net worth quantiles. In 2010 the spike in density remained in the

lowest wealth quantile, however shifted to the second-lowest income quantile. This suggests that

households who lost the most wealth, and are “underwater” on their mortgages, had low, but not the

lowest incomes. Perhaps those with the lowest incomes successfully declared bankruptcy, expunging

their negative net worths, while those with some income faced increased indebtedness.

From the empirical marginal transformation of the income and net worth variables, the scatterplots

in Appendix C.1 make clear the dispersion of negative wealth after the crisis in 2010 as well as the

broad general decreases in income and wealth.

5.1.1 Tail Dependence

We use tail dependence to measure how likely income and net worth (wealth) concentrate in the

extreme values. We consider both upper tail and lower tail dependence as they represent two

different subsets of the population, the very poor and the very rich. The graphs created (see

Appendix D) therefore include two parts: for percentiles lower than 0.5 we look at the lower tail

dependence, while for percentiles higher than 0.5 we examine upper tail dependence.

The black lines plot empirical tail dependence, which is the probability of wealth being higher

(lower) than a certain percentile given the income is higher (lower) than this percentile. For each

year the lower tail appears to get very close to zero in limits. On the other hand, the upper tail

does not go to zero for most of the years. This is consistent with the quantile scatter plots that
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the observations are highly concentrated on the upper right corner (the richest and the wealthiest)

while the observations at the lower left corner is relatively scattered. Intuitively there is a higher

chance that an observation is among the richest and the wealthiest, whereas the observation does

not have to be among the least wealthy ones when the income is among the lowest.

An interesting pattern within upper tail dependence is the slight increase when the percentile goes

from roughly 0.5 to 0.8. This supports the idea that a larger portion of wealth can be accumulated

when income is higher, particularly greater than median income and wealth.

For each SCF dataset, the empirical tail dependence is contrasted with the ones that should be

obtained with the corresponding Kendall’s tau for Gaussian, Gumbel, Clayton and Student-t cop-

ulas. Among the parametric results, Gumbel copula appears to have the best fit, especially for the

lower tail. None of the parametric copulas capture the upper tail dependence very well. Further

research could look into other potential copulas to obtain a better fit.

Too see how the tail dependence changes over time, figure (28) (Appendix D) compares the empirical

results across SCF years. The lower tails are fairly similar for the years 2007 and before. The 2010

graph is significantly lower than the other years. This may be due to the financial crisis in 2008.

Specifically, the collapse of the housing market caused a major drop in the households’ net worth,

therefore the dependence between income and wealth slightly drifted apart.

As for the upper tail, a steady upward movement can be observed for years 1992 to 2007, showing

a higher chance to be among the more wealthy households when the income is higher. Again, the

dependence dropped in 2010 and this phenomenon can be explained similarly as above. Also notice

that this dependence is not affected much for the households with the highest income (above 0.8).

The probability of their net worth being higher than 0.8 or above is still high and the graph follows

the upward movement trend since 1992.

5.2 Goodness-of-Fit

We test hypothetical bivariate copulas Cθ̂ under the null in equation (8) for Gaussian, Student’s-t,

Clayton and Gumbel copulas, respectively. Results for test-statistics, parameters, and approxi-

mated p-values are presented in Appendix E.

14



As expected, the bootstrapped p-value in equation (10) is decreasing in the sample size and number

of bootstrap sub-samples. Thus when we use R = 100 iterations we find p-values of 0.00495 across

the surveys for the Gumbel copula fit, but a p-value of 0.0455 for R = 10 iterations. For both

iteration sizes we reject the null of a bivariate Gumbel copula for income and net worth.

Because Genest & Rémillard (2008) show that the GoF test statistics based on Tn are consistent,

i.e., if C /∈ Cθ̂, H0 is rejected with probability 1 as n→∞. We have a relatively large sample size

for each SCF year, thus rejection is consistent even at lower iteration numbers–an advantage given

the computational intensity of bootstrapping.

We also reject hypothetical Gaussian, Student’s-t and Clayton copulas to describe the data for any

given survey year, though test statistics are an order of magnitude larger than the Gumbel copula

test statistics. Thus while we reject the hypothetical Gumbel copula as a good fit, it is the best fit

of all four.

6 Conclusion

In this paper we examined the changing dependency between income and net worth in the US and

their relative distributions over the last 20 years by applying copula estimation. Using a newer

technique to examine an old idea, we found that the bivariate empirical copula density provides

a nuanced understanding of the overall distribution changes, particularly the changes in lower tail

densities. The higher tail densities are so high and concentrated that it’s difficult to parse any

significance to its changes. From this simple exploration the top quantile looks relatively static,

which is intuitive given the rank-based statistical reliance. Both upper and lower empirical tail

dependence is most closely modeled by the Gumbel copula tail dependence behavior.

From these observations we posited to test the fit of a hypothetical Gumbel copula, however rejected

the null. This seems driven by the extreme density in the top quantile tile relative to the rest of

the copula.

Because this was a preliminary exploration of a new application, there exist many avenues for

future research. Given certain assumptions about the primary economic units’ survey responses
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one could decompose net worth into financial and non-financial assets and income into wage income

and capital income. Thus for the US we may indirectly consider the fiscal evidence presented by

?, that the share of capital income in the US is growing over the last 30 years.

Examining the role of real estate assets over the past decade would also be instructive given the

enormous role distributional assumptions imbedded in mortgage financing and portfolio manage-

ment played in the crisis.

Another consideration could be mixed-formation copulas of the myriad other components captured

by the SCF, including various asset classes. Finally, there also exists potential to expand the

analysis to other countries and use copulas as a tool to better understand the nuanced dependency

amongst income and wealth variables. While the inaccessibility to individual observations and

reliance on STATA programming make the Luxembourg Income Study and Luxembourg Wealth

Study data less ideal, the recent Household Finance and Consumption Study implemented by the

ECB, and modeled after the SCF, would be a natural comparison.
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A Appendix

A Cumulative Distributions 42 
 

  Figure 8: Cumulative distributions of 1988 and 2006 income and 1989 and 2007 
 net worth. 

Figure 9: Relative quantile-difference plot, (net worth-total family income)/total 
family income; 1989-2007 SCF 

Figure 1: Kennickell (2009)

B Gumbel Copula Motivation
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Figure 2: Estimated Density of log(inc), from 2010 SCF, with Imposed log-Normal Distribution
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Figure 3: Theoretical and Empirical Copula Densities
Panel (a) displays the bivariate Gumbel copula density with a parameter α = 2.0639, as calibrated with Kendall’s
tau from 2010 SCF income and net worth variables. Panel (b) displays the bivariate empirical copula density for

income and net worth in the 2010 SCF.
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C Empirical Copula Densities
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Figure 4: 1989 SCF
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Figure 5: 1992 SCF
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Figure 6: 1995 SCF
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Figure 7: 1998 SCF

21



inco
me

0.2

0.4

0.6

0.8

networth

0.2

0.4

0.6

0.8

c(u,v)

0.000

0.005

0.010

0.015

0.020

0.025

Panel (a) Panel (b)

income
ne

tw
or

th

 0.002 

 0.002 

 0.004 

 0.004 

 0.006 

 0.006 

 0.006 

 0.008 

 0
.0

1 

 0
.0

1  0.012 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8: 2001 SCF
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Figure 9: 2004 SCF
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Figure 10: 2007 SCF
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Figure 11: 2010 SCF
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C.1 Quantile Scatterplots
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Figure 12: 1989 SCF
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Figure 13: 1995 SCF
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Figure 14: 1992 SCF
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Figure 15: 1998 SCF
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Figure 16: 2001 SCF
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Figure 17: 2007 SCF
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Figure 18: 2004 SCF
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Figure 19: 2010 SCF
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D Tail Dependence Estimation

Figure 20: 1989 SCF

Figure 21: 1995 SCF

Figure 22: 1992 SCF

Figure 23: 1998 SCF
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Figure 24: 2001 SCF

Figure 25: 2007 SCF

Figure 26: 2004 SCF

Figure 27: 2010 SCF
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Figure 28: All years

E Goodness-of-Fit Test Statistics

1989 1992 1995 1998 2001 2004 2007 2010

Test Statistic 4.515 7.232 7.208 7.133 7.889 9.193 10.159 16.465
Parameter 0.764 0.751 0.718 0.759 0.773 0.786 0.777 0.648
p-value 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 3: Goodness-of-Fit test using Genest & Rémillard (2008) method with null of a theoretical Gaussian copula.
Number of bootstrap iterations, R = 100.

1989 1992 1995 1998 2001 2004 2007 2010

Test Statistic 4.050 5.635 4.930 5.497 6.467 7.014 6.747 9.824
Parameter 0.772 0.777 0.760 0.784 0.792 0.813 0.820 0.734
p-value 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 4: Goodness-of-Fit test using Genest & Rémillard (2008) method with null of a theoretical Student’s-t copula.
Number of bootstrap iterations, R = 10.
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1989 1992 1995 1998 2001 2004 2007 2010

Test Statistic 33.890 46.230 44.516 50.321 55.434 61.467 60.666 72.581
Parameter 1.212 1.176 1.092 1.192 1.228 1.272 1.285 0.862
p-value 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 5: Goodness-of-Fit test using Genest & Rémillard (2008) method with null of a theoretical Clayton copula.
Number of bootstrap iterations, R = 10.

1989 1992 1995 1998 2001 2004 2007 2010

Test Statistic 1.419 2.029 1.443 1.770 2.227 2.407 2.392 3.595
Parameter 2.361 2.372 2.274 2.423 2.485 2.647 2.674 2.143
p-value 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
n 15,715 19,530 21,495 21,525 22,210 22,595 22,085 32,410

Table 6: Goodness-of-Fit test using Genest & Rémillard (2008) method with null of a theoretical Gumbel copula.
Number of bootstrap iterations, R = 100.
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